- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Bansil, Arun (3)
-
Lane, Christopher (2)
-
Markiewicz, Robert S. (2)
-
Agarwal, Amit (1)
-
Barbiellini, Bernardo (1)
-
Chang, Tay-Rong (1)
-
Chen, Xiang (1)
-
Chen, Xianhui (1)
-
Chiu, Wei-Chi (1)
-
Guo, Mingyao (1)
-
Hakioglu, Tugrul (1)
-
Hashimoto, Makoto (1)
-
He, Junfeng (1)
-
Hu, Yong (1)
-
Lin, Hsin (1)
-
Lu, Donghui (1)
-
Mardanya, Sougata (1)
-
Markiewicz, Robert (1)
-
Nieminen, Jouko (1)
-
Ning, Jinliang (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ning, Jinliang; Lane, Christopher; Barbiellini, Bernardo; Markiewicz, Robert S.; Bansil, Arun; Ruzsinszky, Adrienn; Perdew, John P.; Sun, Jianwei (, The Journal of Chemical Physics)The enigmatic mechanism underlying unconventional high-temperature superconductivity, especially the role of lattice dynamics, has remained a subject of debate. Theoretical insights have long been hindered due to the lack of an accurate first-principles description of the lattice dynamics of cuprates. Recently, using the r2SCAN meta-generalized gradient approximation (meta-GGA) functional, we have been able to achieve accurate phonon spectra of an insulating cuprate YBa2Cu3O6 and discover significant magnetoelastic coupling in experimentally interesting Cu–O bond stretching optical modes [Ning et al., Phys. Rev. B 107, 045126 (2023)]. We extend this work by comparing Perdew–Burke–Ernzerhof and r2SCAN performances with corrections from the on-site Hubbard U and the D4 van der Waals (vdW) methods, aiming at further understanding on both the materials science side and the density functional side. We demonstrate the importance of vdW and self-interaction corrections for accurate first-principles YBa2Cu3O6 lattice dynamics. Since r2SCAN by itself partially accounts for these effects, the good performance of r2SCAN is now more fully explained. In addition, the performances of the Tao–Mo series of meta-GGAs, which are constructed in a different way from the strongly constrained and appropriately normed (SCAN) meta-GGA and its revised version r2SCAN, are also compared and discussed.more » « less
-
Peng, Shuting; Lane, Christopher; Hu, Yong; Guo, Mingyao; Chen, Xiang; Sun, Zeliang; Hashimoto, Makoto; Lu, Donghui; Shen, Zhi-Xun; Wu, Tao; et al (, npj Quantum Materials)Abstract In high-temperature ( T c ) cuprate superconductors, many exotic phenomena are rooted in the enigmatic pseudogap state, which has been interpreted as consisting of preformed Cooper pairs or competing orders or a combination thereof. Observation of pseudogap phenomenologically in electron-doped Sr 2 IrO 4 —the 5d electron counterpart of the cuprates, has spurred intense interest in the strontium iridates as a testbed for exploring the exotic physics of the cuprates. Here, we examine the pseudogap state of electron-doped Sr 2 IrO 4 by angle-resolved photoemission spectroscopy (ARPES) and parallel theoretical modeling. Our analysis demonstrates that the pseudogap state of Sr 2 IrO 4 appears without breaking the particle–hole symmetry or inducing spectral broadening which are telltale signatures of competing orders in the cuprates. We find quasiparticle dispersion and its temperature dependence in the pseudogap state of Sr 2 IrO 4 to point to an electronic order with a zero scattering wave vector and limited correlation length. Particle–hole symmetric preformed Cooper pairs are discussed as a viable mechanism for such an electronic order. The potential roles of incommensurate density waves are also discussed.more » « less
An official website of the United States government
